
)l * ECURtTY CLASSIFICATiON OF THIS PAGE .,.n Data Entered)

,,REPRTDOCUMETATION PAREAD INSTRUCTIONS
?.REPORT D PAGE BEFORE COMPLETINGFORM

I. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AI-TR 11I00i

4. TITLE 'and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Intelligent Assistance for Program memorandum

Recognition, Design, Optimization, and I. PERFORMING ORG. REPORT NUMMER

Debugging

7 AUTNOR(e) S. CONTRACT OR GRANT NUMBER(.)

Charles Rich and Richard C. Waters N00014-88-K-0487

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

It CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency January 1989
1400 Wilson Blvd 1s. NUM@ER OF PAGES

CJ Arlington, Virginia 22209 28

14. MONITORING AGENCY NAME & ADDRESS(lf different from Controlling Office) 1S. SECURITY CLASS. (of thl report)

Office of Naval Research UNCLASSIFIED
Information Systems

Arlington, Virginia 22217 PSa. O{C.ASSIFICATION/OOWNGRAOING

16. DISTRIBUTION STATEMENT (of this Report) imi a

Distribution of this document is unlimited. ELECTE
t4 APR 1989

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different frog" Report)

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reveree side if noceeear and Identify by block number)

automatic programming optimization
debugging recognition
design Programmer's Apprentice

20. ABSTRACT (Continue on reveree aide If necoeeary ad Identlof by block umber)

We describe research in four related areas, based on the following
theoretical principles: the assistant approach (incremental automation)
and the exploitation of cliches (using knowledge of common engineering
practice). Each investigation involves the construction of a prototype
system to provide intelligent assistance for a person performing the
task: A recognition assistant will help reconstruct the design of a
program , given only its source code. A design assistant will assist

DD JAN73 1473 EDITIONOF I NOV S IS OBSOLETE UNCLASSIFIED
S/N 0!02-014-6601 I SECURITY CLASSIFICATION OF

r
TNIS PAGE (llton Doae Entered)

Block 20 Cont'd...

a programmer by detecting errors and inconsistencies in his design choices and
by automatically making many straightforward implementation decisions. An optimizati
assistant will help improve the performance of programs by identifying
intermediate results that can be reused. A debugging assistant will aid in
the detection, localization, and repair of errors in designs as well as completed
programs. These prototypes will be constructed using two shared technologies: a
programming language independent formal representation for programs and programming
knowledge (the Plan Calculus) and an automated reasoning system (CAKE), which
supports both general logical reasoning and special-purpose decision procedures.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1100 January 1989

Intelligent Assistance for Program

Recognition, Design, Optimization, and Debugging

by

Charles Rich and Richard C. Waters

Abstract

-We describe research in four related areas, based on the following theoretical
principles: the assistant approach (incremental automation) and the exploitation
of clich6s (using knowledge of common engineering practice).

Each investigation involves the construction of a prototype system to provide
intelligent assistance for a person performing the task: A recognition assistant
will help reconstruct the design of a program, given only its source code. A design
assistant will assist a programmer by detecting errors and inconsistencies in his
design choices and by automatically making many straightforward implementa-
tion decisions. An optimization assistant will help improve the performance of
programs by identifying intermediate results that can be reused. A debugging
assistant will aid in the detection, localization, and repair of errors in designs as
well as completed programs.

These prototypes will be constructed using two shared technologies: a pro-
gramming language independent formal representation for programs and pro-
gramming knowledge (the Plan Calculus) and an automated reasoning system
(CAKE), which supports both general logical rewoning and special-purpose deci-
sion procedures. r . , , Q/,, c,

Itevised version of prbposal submitted to th National Science Foundation.

Copyright @ Massachusetts Institute of Technology, 1989

The research described here was conducted at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research has been provided in part
by the following organizations: National Science Foundation under grant IRI-8610644, Advanced Research
Irojectk Agency of the Department of Defense under Navt Research c-ntract N00014-88-K-0487, IBM
Corporation, NYNEX Corporation, Microelectronics and Computer Technology Corporation, and Si-eimens
Corporation.

The views and conclusions contained in this document are those of the authors and .,hould not be
interpreted as representing the policies, expressed or implied, of these organizations.

Accession For

NTIS GRA&I
DTIC TAB
Unannoumced El

Justiftcation,

~By.
Distribution/

Availability Codes

,Avail and/or

Dist Speoial

Contents

1 Introduction 2

1.1 The Assistant Approach
1.2 Clich6s 3
1.3 The Plan Calculus 4
1.4 A Hybrid Reasoning System

2 Recognition 7
2.1 A Feasibility Demonstration 9
2.2 Determining the Limits of Bottom-Up Recognition 10

3 Design 11
3.1 What KBEmacs Can and Cannot Do 11
3.2 A Target Scenario 12
3.3 Building The Design Apprentice 15

4 Optimization 15
4.1 An Example 16
4.2 Automating Redistribution 17

5 Debugging 18
5.1 Localizing a Bug 19
5.2 Assistance for Design Evolution 22

6 Conclusion 23

Acknowledgements

This paper draws in large part on the work of the following students in the Programmer's
Apprentice group: Linda Wills (recognition), Yang Meng Tan (design), Robert Hall (opti-
mization) and Ron Kuper (debugging).

@I

1 Introduction

This paper describes new aiid ongoiig research iti the Programmer's Apprentice project [49].
l-ach of the following four secions describes a three-year investigation into automating an

aspect of the prograininiiig task withiii the franmework of the assistant approach and the
exploitation of clich~s. Each investigation also involves the construction of a prototype
systrem using the shared technologies of the Plan Calculus and CANE.

In the area of program recogiition, we have denonstrated the essential feasibility of au-
toniaticallv recognizing programming cliches iii undocumented source code, using the Plan
('alculus as all interiiie(liate language. It is clear however, that the completely automatic,
bot toll- grapli-)arsilii" approach we have (leveiolped will not scale up to programs of real-
istic size --additional guidance will have to I)e provided. for example, by a person. In order
to arrange this di ision of labor appropriately, a key question to be answered is what are the
fundamental limits of bottom-up recognition.

I the area of program design, we are building a prototype Design Apprentice, which will
assist a programmer in the process of detailed design by detecting errors and inconsisten-
cies in his design choices and automatically making many straightforward implementation
decisions. The Design Apprentice extends our earlier work (KBEmacs), which used the
Plan Calculus and a library of ,Iiclis to partially automate program implementation. This
extenon is made possible by the availability of CAKE to provide the necessary automated
d(leduction facilities.

II tihe area of program)optinization, our work is motivated by the fact that constructing
software using clich6s (or more generally, any kind of reuse) often sacrifices run-time effi-
ciencv. Our solution to this problem is to develop a powerful program optimization system,
using the Plan Calculus as the intermediate language and using CAKE to verify the necessary
properties. As in the case of program recognition, we plan to explore the limits of completely
automatic optimization, as a prelude to applying the assistant approach.

Finally, in the area of program debugging, we have demonstrated the feasibility of using
the Plan Calculus and the truth-maintenance facilities of CAKE to assist in the localization of
bugs using test cases. We plan to extend and generalize this work in several directions, such
as intelligent assistance for bug repair and the application of similar techniques to incomplete
progranis with partial specifications. We also plan to investigate the utility of bug clichds
within this framework.

1.1 The Assistant Approach

One aplroach to solving current software problems is to totally eliminate programmers
lirougli "'antol1atic programming." As typically conceived, automatic programming calls
for aii end user to write a complete specification for what he wants; a completely automatic
system then generates a program satisfying this specification. Program generators of this
type have been succcssfully developed for a number of narrow applications. However, com-
pletely automatic programming for a broad range of application: is not a realistic near-termi
goal [-I,

.-\i alternate approach is to assist p)rogramnmers. rather than replace them. A provocative

example of the assistant approach was proposed by IBM's Harlan Mills in the early 1970's.
He, s,!,ested creating 'chief progranmer teams" by surrounditig expert programmers with
Sti lport staff's of hunian a;sIstanlts, including junior programmers, documentation writers,
lProgr;111 librarians. and so oil. Tile producI(tivity of the chiief programmier was thereby III-

crCased. because lie could apply his full effort to the most diflicult parts of a given software
task without getting bogged down in the routine details that currently use up most of every
programmer's time. Experience has shown that this division of labor can be very successful.
The long-term goal of our project is to provide eveiy programmer with a support team in
the form of an intelligent computer program, called the Programmer's Apprentice.

The assistant approach lends itself to incremental progress. Initially, the Apprentice will
be able to take over only the simplest and most routine parts of the programinlig task. As
technology advances, however, the proportion of the task handled by the Apprentice will
increase---we don't have to wait until some activity can be totally automated. Furthermore,
sone parts of a given program may always have to be hand coded due, for example, to
ext rcunelv strict performance requirements. However, especially in large systems, there is
always plenty of routine work to be done.

The key to making the assistant approach work is the communication between the pro-
grammer and the Apprentice: It must be based oii a substantial body of shared knowledge
of programnning techniques. If the prograununer had to explain everythig to the Apprentice
in cletlentarv teruis. it would be easier to (to the work himself. This leads us to the second
lriiiciple.

.1.2 Clich6s

Human programmers seldom think only in terms of primitive elements, such as assignments
and tests. Rather, like engineers in other disciplines, they mostly think in terms of commonly
used combinations of elements. We call these familiar combinations clich6s. Successive
approximation, device driver, and information sstein, are examples of programming clichds
spanning the range from low-level implementation ideas to high-level specification concepts.
(Solowav and Ehrlich [56] have conducted a number of empirical studies with prograuniners
that support the psychological reality of programming cliches.)

In general, a clich6 consists of roles and constraints. The roles of a clich6 are the parts
that vary from one occurrence of the cliche_ to the next. The constraints are used to specify
fixed elements of structure (parts that are present in every occurrence), to check that the
parts that fill the roles in a particular occurrence are consistent, and to compute how to fill
empty roles in a partially specified occurrence of a clich6.

An essential property of clich~s is their relationship to one another. For example. a clich6
may be a special case or an extension of another clich6. Algorithmic and data structure
c lic hs may be related as possible i-mplemen tation s of specification cliclhs.

(i ven a library of clich6s, it is possible to perform many programming tasks by inspec-
fion. ratler than by reasoning from first principles. For example, in analysis by inspection.,
pro),'rties of a program are deduced by recognizing occurrences of clich6s and referring
to their kniown properties. In synthesis by inspection, implementation decisions are made
bv recognizing clichcs in specifications. and then choosing among various iniplenieiitation

3

L.A IC.

Our work focuses on the use of inspect ion methods tu automate programming, as opposed
to more general, but harder to control methods, such as deductive synthesis or program trails-
formations. In human programiuing, inspection IIiethods are the most effective approach to
use whenever they are applicable. However, since inspection methods are ultimately based on
experience, they are a)plicable only to the routine parts of programming problems. This is
coipatibie woith the intended division of labor between the programmer and the Apprentice.

As we will see in the upcoming sections, codifying clichds is a central activity in the
p.,cr \Ve are building libraries of cliches in the areas of program implementation, design.
and requirements. We will also see how a shared vocabulary of cliches serves as the language
of communication between the programmer and the Apprentice.

1.3 The Plan Calculus

The Plan Calculus is a formal representation for programs and programming clich&s. Since
this formalism is now quite well known, we will summarize only its key properties here.
(Program representations related to or derived from the Plan Calculus have been used by
many others for work in program recognition [21, 34], tutoring [16, 30], translation [18, 60],
algorithm design [26, 27], debugging [54, 33], and maintenance [35].)

To a first approximation, the Plan Calculus can be thought of as combining the rep-
resentation pro)erties of flowcharts, data flow schemas, and abstract data types. A plan
is essentially a hierarchical graph structure made up of different kinds of boxes (denoting
operations and tests) and arrows (denoting control and data flow). The representation has
both a graphical notation [46] and a formal semantics used for reasoning [44, 43].

The major advantage of the Plan Calculus is that it abstracts away from the details
of algorithms and data structures that are a result only of their expression in a particular
programming language. The explicit representation of control and data flow in the Plan
Calculus greatly simplifies all of the manipulations that need to be performed for intelligent
programming assistance, as well as making it possible to implement assistants that are, to
a large degree. programming-language independent. For example, a data flow arc between
tu'o operations abstracts away from whether a temporary variable was used, or whether the
producing operation was nested inside the invocation of the consuming operation. Similarly,
the same net control flow graph can be achieved by many different combinations of control
prilnitives.

The Plan Calculus is a wide-spectrum formalism. Each operation and test in a plan has
associated with it a set of preconditions and postconditions specified in a logical language.
A plan ii which all of the operations and tests are primitives in some programming language
is equivalent to a concrete program. However, the Plan Calculus is also used to represent
partially designed programs and programming clich6s, in which case the operations and
tests may may have abstract or incomplete specifications, and there may be arbitrary logical
constraints, as well as data and control flow.

Taxonomic relationships between cliches, such as specialization, are handled by special-
pur)pose mechanisms in the clich6 library. The relationship between a specification and
an implementation is represented in the Plan Calculus by an overlay. Formally, an overlay

4

defines a mapping from the set of instances of the implementation plan to the set of instances
of the specification. (This is a generalization of the abstraction function in the abstract data
type methodology.) A clich6 library may contain different overlays with the same donain
anld/or range, corresponding to different ways of abstracting the same implementation and/or
different ways of implementing the same specification. An key feature of overlays is that they
are used for both analysis and synthesis.

1.4 A Hybrid Reasoning System

The degree of intelligent assistance the Apprentice can provide ultimately depends on its
ability to reason about structured objects (programs, specifications, requirements) and their
properties. Our approach to this reasoning task is to use a combination of special-purpose
techniques and general-purpose logical reasoning.

Special-purpose representations and algorithms are essential to avoid the combinatc,'ial
explosions that typically occur in general-purpose logical reasoning systems. On the other
hand. logic-based reasoning is very valuable when used, under tight control, as the "glue"
between inferences made in different special-purpose representations.

\Ve have developed a hybrid knowledge representation and reasoning system, called
CAKE (45. 19, 20], that we are using for all current work in the project. Figure 1 shows
the architecture of CAKE. CAKE combines special-purpose representations, such as frames
and the Plan Calculus, with general-purpose logical and mathematical reasoning. Each layer
of CAKE builds on facilities provided by the layers below.

Figure 2 is a short transcript from the currently running version of CAKE, illustrating some
of the facilities provided in the propositional, algebraic, and frame layers. (Line numbers in
the following discussion refer to Figure 2.)

The propositional layer of CAKE provides three principal facilities. First, it automatically
performs simple "one-step" deductions (lines 1-3) (technically, unit propositional resolution).
The use of very limited form of logical inference here is an example of what we mean by
keeping tight control over general-purpose mechanisms.

Second, the propositional layer acts as a recording medium for dependencies (what is often
called a truth-maintenance system), and thus supports explanation (line 3) and retraction
(lines 4-5). These facilities are motivated by the observation that when you delegate work to
an assistant, you also need to have accountability and the ability to recover from mistakes,
in case it doesn't do what you expected.

Plan Calculus

Frames

Algebraic Reasoning

Propositional Logic

Figure 1. CAKE has a layered architecture.

15

1> (Assertq P)
2> (Assertq (Implies P Q))
3> (Whyq Q)

Q is TRUE by Modus Podiens from:
1. (IMPLIES P Q) is TRUE as a premise.
2. P is TRUE as a premise.

4> (Retractq P)
5> (Whyq Q)

I don't know whether or not Q is true.
6> (Assertq (And P (Not Q)))

>>Contradiction: There is a conflict between the premises:
1. (AND P (NOT Q)) is TRUE.
2. (IMPLIES P Q) is TRUE.

Type cr to postpone dealing with this contradiction.
Type premise number to retract one of the premises.

7> 1
Retracting (AND P (NOT Q)) being TRUE...
#<Node (AND P (NOT Q)): False>

8> (Assertq (= I J))
9> (Whyq (= (F I) (F J)))

(= (F I) (F J)) is TRUE by Equality from:
1. (= I J) is TRUE as a premise.

10> (Assertq (Transitive R))
11> (Assertq (R W X))
12> (Assertq (R X Y))
13> (Assertq (R Y Z))
14> (Whyq (R W Z))

(R W Z) is TRUE by Transitivity from:
1. (R W X) is TRUE as a premise.
2. (R X Y) is TRUE as a premise.
3. (R Y Z) is TRUE as a premise.
4. (TRANSITIVE R) is TRUE as a premise.

15> (Assertq (Subset A B))
16> (Assertq (Member X A))
17> (Whyq (Member X B))

(MEMBER X B) is TRUE by Subsumption from:
1. (SUBSET A B) is TRUE as a premise.
2. (MEMBER X A) is TRUE as a premise.

18> (Deftype Address (:Specializes Number))
19> (Deframe Interrupt

(:Roles (Location Address) Program))

20> (Deframe Device
(:Roles (Transmit Address) (Receive Address)))

21> (Deframe Interface
(:Roles (Target Device) (From Interrupt) (To Interrupt))
(:Constraints (= (Location ?From) (Receive ?Target))

(= (Location ?To) (Transmit ?Target))))
22> (Flnstantiate 'Interface :Name 'K7)
23> (FPut (>> 'K7 'Target 'Receive) 777777)
24> (FGet (>> 'K7 'From 'Location))

777777
25> (Why ...)

(= 777777 (LOCATION (FROM K7))) is TRUE by Equality from:
1. (= (LOCATION (FROM K7))

(RECEIVE (TARGET K7))) is TRUE.
2. (= (RECEIVE (TARGET K7)) 777777) is TRUE as a premise.

Figure 2. A transcrilpt friom the currently running version of CAKE, illustrating the reasoning 4
capabilities of the ipropositional, algebraic, and frame layers.

6

[hiird, the propositional layer detects contradictions (lines 6-7). Furthernore, contra-
k liiitils are represeited explicitly in such a wa y thiat reasoning can continue with oilier
iiiforliltat iol not Involved in the contradiction. This featire is motivated by our desire to
suTpp)ort ali evol utiontarV proranll ning process. In this kind of process, the program iner s
kltowledge is very ofteitl iII an inconsistent stale, particularly during the requiireiteits acqui-
sition and analysis phase.

The algebraic laver of CAKE contains special-purpose decision procedures for equality
reasintitg. coInmiot algebraic properties of operators (such as coiniutat ivitv. associativitv.
ai ais t ivi ty), p)artial functions, and the algebra of sets. tlie congruence closure algorit ll
ii I1Tis layer ,leteriniles whether or not terns are equal by sulhstitutioi of equal subterins

is). The decision procedure for transit i vity\ (lines 10-1-) determines wheit elcii eil s
of a hinarv relation follow bv transitivity froim other elements. The algebra of sets (lines

17 in \olves the theory of membership, suL)set. union. intersection and coipleinents.
louality reasoning is very important in CAi E. because the formal semantics of ti l Plait

Calculus makes heavv use of equality. Data flow arrows in plans intplv equalities between
terms representing the source and destination points: correspondences in overlays arc also
cqualitics. Other algebraic properties. such as transitivity, comimutativity, etc.. conic up
everywhere in the formal modeling of data structures.

The frames laver of CAKE supports the standard frame notions of inheritance (:Specializes
ill line 18). slots (:Roles in lines 19-21). and(instantiation (line 22). The organization of
cliche libraries is based on frame inheritance.

A iiotal)le feature of CAKE's frame system is that constraints are implemented in a general
O way. lor example, the definition of the interface frame (line 21) has constraints between the

roles of the instances filling its roles. When an instance of an interface is created (ilne 22) and
a particular value (777777) is put into one of its "second level" roles (line 2.3), the saine value
cali be retrieved from the other constrained role (line 24). This propagation is not achieved
hy ad hoc procedures., but by the operation of the underlying logical reasoning system.
including dependencies (line 2.5). Constraint propagation makes it possible to incrementally
acquire information in any order.

The Plan Calculus layer of CAKE supports graph-theoretic manipulations of plan dia-
grams and overlay diagrams. such as following arcs. It also implements the formal semantics
of the Plan Calculus, so that hybrid reasoning can take place involving both structure (as
expressed by the diagrams) and function (as expressed in the preconditions, postconditions,
and other logical annotations). In the semantics of the Plan Calculus, names of plans become
prCdicate symbols. names of roles and overlays become function symbols, correspondences
)ecomite equalities. data flow becomes a combination of equalities and a partial order, and
control flow becomes a combination of an equivalence relation and a, partial order.

2 Recognition

Prograin recognition is the process of identifying occurrences of clichds in a program. The
result of the process is a hierarchical description of the program that can be interpreted as
its design in terms of a given library of clich6s (in general, there may be several possible such

* descript ions). Recognition is an important task to study for both practical and theoretical

7

li t a cie lit lc tIc t VII tIi ilt sII i U ,\Ill iii I I PI, Y II N1 'I IIti t lo IIs t I I olser vat loI I tha t
recoo~~ Iu III s it protI I I I Ict i I t IvIt v Ii J-tgiiiiiittuaie lc scurently the dlomfinanit

~'k~tw\ir cost. IIIt Ie 1, !'i1i. WO'dl\i(idow curdimg the iiil'oriiatioii duuIIIIIg (Iesign that WIll
he) ict'de4.i 1)1r tiitiiil(c sec tIext sect loll) I lowev'er. inl the mneanwiwle. t here is a hiuge
1 40d1 V oft extant code hIwII,- miaiiit aitiedl. for whlich the desigr1c(ordi is effcctivelv unavailable.
Al\k1itoiael, prrt01.Iiii I(u"11it IWu (011(1dh l4 orcalt1I as.sistallce to prograin iaintainers InI tis

j) roI2,'al[II (ecol4 i tti is, :iii tlit l Itouili it 11l(4,iet jil stati(1)oitil bec'ause it providles all

aInt nt. ~~e~'i i uiu fi'5 FlnIt'iet work Oil lejpIleseli()
~iinii ii iL)V14iZ isi2>WiiiC(I-t o-SmItie ti* lslria R~sIeg.LJ)5l~&dfotbIng

k'\tliv ' iltteoi t owl 4 is i k,-ow~led i, ulii' III t11c stillirsis dir ct tou: t ile lan alctilus
-I)1)Ol iiS lt auiallvsis ;iA~ sylltitesis III the s1Lile r4(-)resentati0uI.

lPro4oramt rccoomiin ii tivI also4 serve to etiliaulice t lie p)ower of' technuite., for other tasks.
(Ilitit proor)t~ijIti oPt Ilinizat iou atiol debugi~ong, I c see scyfleilt Sectitolls oil t hese topics). For

4xinipe reoo2ii old (014)tpellisate t or 111c al)seiice (It (lCSI'"ti iiifortii1atiOli YC(11.iiredl for1

41 ii1 /Ht 41i ImlIiartv, 14)II-lg ig asst latIc(' Iii i he c t iihliice bv(1 l Il(e all iv to reco~41il ,

A, it)~ ('N1Pweituil)14e ojj' the~ PeCo''iilt iW[ll 4t'oo s.cil ('0 1111 pruat in Luure :3. A

itiiit feaitume of, t hs progr0Iatn is I lie clich(l usage of CAR. CDR. and NULL in the loop to
I1 In I tt tw I lst IitI I he va riable BUCKET. TI to, fort, of thle COND test in thle 100o) indlicates that

1I 440 km 15, li1ii liit memb~ershipl test for' ELEMENT ill BUCKET andt that the BUCKET list
141V'iiialv. tile way BUCKET is comput eo f'rom STRUCTURE and ELEMENT usinig SXHASH

1Irnoiii' t hat STRUCTUREI.is a hash tilhle aii. IliereCOre, that the program as a whole is testing
iii .4 14 illiwrsln p ot' ELEMENT 'in this hash ii hie.

(DEFU;: HASH-TABLE-MEMBER (STRUCTURE ELEMENiT)
(LET ((BUCKET (AREF STRUCTURE (SXHASH ELEMENT))

(ENTRY NIL))
(LOOP

(IF (NULL BUCKET) (RETURN NIL))
(SETQ ENTRY (CAR BUCKET))
(COND ((STRING> ENTRY ELEMENT) (RETURN NIL))

((EQUAL ENTRY ELEMENT) (RETURN T)))
(SETQ BUCKET (CDR BUCKET)))))

Figure 3. l'idocutueiced ('o(liil Lisp) pro(gram.

111c eviSuiIl(c(oLII tII. Piog aIi recogti 411(1 1I appe(ars5 effortless Nvilevi pe~ople CIO it.
1 !~w4v~u.)1uO!4rtatt t40)01Oi t (ilb aer it 1lihel (Jht ie that make it difficult to autounate:

0 >tutactic VXal'UIRoII lle1re are tvlp~icahhv ttlaliv diflceut ways to achieve the same iiot

110w of, dataI ail1 coIt 1) (eg.hle iitouamt ili Figuute 3 co0uld(have had more or fewer
(f'Itip0o,'a m Vaia bIiios. or imsco1 DO i tid (df LOOP).

* I111llilienII t lollI va ruat ion 'Ilicre are typIical ly iany dlifferenlt concrete a Igori t Iins
that I ca i be u sedl to iilleineiit a aiveni abstract ion (e.g., the hash ta ble Ii Figure 3
COIil have bQeii IIn pleivienlt ed using a hiasl/rehash scheiiie rather t han bucket lists).

* lilstrsuctunre Pieces of a cliche are somietimies vidlelv scattered through-1 tile
text of at prolgra ili. rat her thIian b hei cg ointiguous. (As discussed Ii [31]. this canl be at
I- Iificaill Source of, diffiut for hinnprugral n recogilit ion as wvell.)

* 0 x~iiaiesrr r Not all programis arie compl-)etely conistruLcte d out Of clichcs.
~'(~'lotni oust I e h e able to ignore iiii recognizable s-trlucture,.

2.1 A Feasibility Demonstration

A1 pottp]e systeml has been imiplemnented. wli icli automnates the recognition of clili's ;

Gi1 at)rograil i a nd a I b rarv of clichi6s. t lie rccogiiizer finds all occurrences of thle ci icli&
ill t1 i p rogra i an buLil ds a hierarchical dJescript)1ion of the programi inl ternis of thle ci iclii

l1o(1l and t1he rela t ionslhiips bet ween themi. As shlo%%ii in Figure 4, the systemn can p resent
ilo, de-ciptionin Ili e form- of a textual explanation of the programn design.

HASH-TABLE-MEMBER is a Set Membership operation.
It determines whether or not ELEMENT is an element of the set STRUCTURE.

The Set is implemented as a Hash Table.
The Hash Table is implemented as an Array of buckets, indexed by hash code.

The buckets are implemented as Ordered Lists. They are ordered0 lexigraphically. The elements in the buckets are strings. An Ordered
List Membership is used to determine whether or not ELEMENT is in the
fetched bucket, BUCKET.

Figure 4. Ani explanation of the design of the programn inl Figure 3, autom-atically produced by
thle pr~ototype programin recognition systemn. :Uper case (egELEMENT) idctsidetfesilJl~ the

prga ti:intial c.n)italizatioil (e.g.. Set %enibership) indicates the namnes of clidh6s in the library
anld heil m roles.

The arcitect nre of the prototype rccogiiition system~ is showvn in Figure 5. The Jprogramn
to be anlllyzed is first converted into a plan. This translation deals with m-ost of tile syntactic

va na n hiloili prirgranis by mnafpilig syiitactically distinct programs to identical p~lains.
I'slig the Plan Calculus also addresses tile lprolblcm of diffuse structure, since niany~ cliches
aref 111 mCli more localized Ii a data and corul rol flow graph than iii programi text.

lime recognizer is able to deal with limplemnentation variation byV virtue of the fact, that
tIce cl ich,' Ilibrary containus not onlyv c~iclu~s, but also informnation (ill overlays) about, hlow%
hley inliplemiient onle aniot her.

Thie atct ial recognition is perfortned by moeans of a graph parsing algorithmn [10], whlich has
beeii extend~edl to .."kip) over" unrecognizable sections of the input graph. The clich6 library
is tilea ted ais at graph grammiar [17], Ii Mvli each clich6d (efines a non-termninal. Overlays are. 1 livaeaI'd as addlit ionalI rules that capture inipleiieiitation dlecisions. The output, of the parsing

a lg nil iis. illgeir~l a set of den vatioi is. wI 1c cli iicode a hiierarchicalI deconiposi lion of

clich(' library

lprog r a in [lan liracia

translate parse heacia
text descriptions

Figure 5. Architecture of' the prototype recognizer.

tie originaIl 1)rograin in terms of clichs and imin1enientation decisions in the library. (There
may he several different paths through the graminar that result in the same program.) By
knitlilg together pieces of -'canned" text attached to the cliches, it is straightforward to
produce a textual explanation, such as Figure -4. from a derivation (see [14]).

.lost other attenipts to automate the prograiii recognition process use an architecture
Ihat is fhiiamentally siilar to Figure 5. However. they differ in their intermediate repre-
sentation for programs and clich6s, and in the way parsing is performed.

Most existing [25, 52] and proposed [32] recognition systems operate directly on program
text. This limits the variability and complexity of the structures that can be recognized,
because these systems must wrestle directly with syntactic variations, performing source-to-
source transformations to twist the code into a recognizable form. Most of these systems'
effort is expended on trying to canonicalize the syntax of a program, rather than recognizing
its deeper semantic content.

The Laura systemn [2] uses a graphical representation for prograIns. These graphs, how-
ever. only represent control flow; assignment statements become nodes in the graph. As a
result. this system does not handle syntactic variability in data flow any better than systems
operating directly on source text.

A few existing [30] and proposed [21] systems have adopted plan-like intermediate nota-
ions. This aids then sigmificantlv in dealing with syntactic variations. However, like the

oilier systems described albove, these systems depend on heuristic techniques to recognize
features of a prograi, rather than oi the kind of systematic and exhaustive approach pre-
s elted here. These heuristic approaches have advantages with regard to efficiency, but limit

lie power aid extensilbility of the systems.
One svstelnl that takes the same approach as the prototype recognizer we have built is

I'lutz's vst,l [33. 34]. This system uses the Plan Calculus representation for programs and a
Oripl parsing algorithin. The parsing algorithm is based on generalization of a chart parsing
lec lilli uc for stings.

2.2 Determining the Limits of Bottom-Up Recognition

V"lll scale. alitomiated program recognition will f)rol)al)ly require a hybrid approach, coil-
,,iiii ig tie kinid of bottom-1I) recognitio i demi istrated above with top-down processing
(Irivei by exf)eCtaLions provided by a person or automatically gleaned fr'om documentation
(iicludimg comments). A key question ill this arcliiecttIre is just how much can be done

ot t.oill- 1f).

1 0

i fI (I irst ve;ti rof t IeI(researc I , We plan1 Ito explore tInI s (I ties tioni emlp I ricalIly. To (10 so. t l ie

Iiotty~ recognliti onl svstenli nleeds to be extcnided In several way-s. InI particular. the currcnit
pirototylpe cannot Yet handle recursion (other than tail recursion for loops), destructive op-
erlt ionls onl data strictures, or incomp~lete programs. Ii addhitioin, the prtototyp~e lacks somec
needled logical iniference calpabilities. All of these dleficiencies are a result of the fact that this

prout pewas ii pleminented onl top of anl earlier version of the Plan CalcuIlus, rat her thanl
.11KCA N i:. Iii adicit ion. the ctiiche library will ineedl t~o be exp~andedI and a module needs

lo keb iinpleinezited to tiutoniaticahll convert the libralry iiito an equivalent graphl g-aliia r
(tis Is ien rreiit ly a urn nual process). Our goal for the firist year is to begin to expelieiiet

wt11 coi n1)let ely automat ic recog-nitionl of programs Inl the order of hundreds to thouIsands of'
linIeI.

Our- g)oal for the second year of the research is to conie to a theoretical understandiiig of
he li mit s of this approach. This will begini withI thle met eriiig of specific experimnts anid

cuiniiiiat e wit 11 anl abst ract chiaracterizationi of thle complexityv of the full-scale system. T[his
heoret ical anialysis wvill suggest, amonig other t iiig,,s, vhiere the divisioin of labor should lie

Ii a hybIrid system-. For examp~le. if the com-plexity of the algorithm is dominated by the size-
of the -raitinar, then we Nviii be led to conisider how user guidance can be utilized to niarrowv
downv lie set of ciichi6s to be searched for at anly p)articular time. The complexity analysis
may also point out opportunities for utilizing parallel hardware (we have already started a
Smlall exp~loration Ii this direction [311).

InI the third year of the research, we plan to build a first prototype of a hlybrid recog-.Ilt*IOl systemI, which combines bottomn-up algorithmnic techniques with expectation-driven
n echaIi isi s. ilich u (]mg user guid(ance.

3 Design

Our first prototype of a part of the Programmer's Apprentfice, called IKBEmacs (K1.nowledge-
Based Editor in Emacs) [39,.58S], focused onl intelligent assistance for programn implementa-
tion. lKBEinacs allows a progrrammner to construct a program more rapidly and reliably than
usHig a con'ventional programn editor, by using the Plan Calculus as an internal representa-
tion) of, thle algorithmlic structure of a program aiid by priov'iding a library of prograiingi-f
ciche's. The research described Ii this section is motivated partly by problemis uncovered
III kwo0kiiig oii NKBEniiacs anid partly by the desire to extend the range of assistance into
low-h vel s Jecificat is and designi.

3.1 What KBErnacs Can and Cannot Do

l\ kl-ipms augmenits the existing text- and] syntax-based commands of Emacs [.57] wvith a new.
111gliel . lev el of editing commands. Using IKBimacs. chainges in the algorithmic struct nrc of
a jprogra in call be achieved by a slingle commanid, even when they correspond to widespread
(lid i -es iii thle p)iograin text. Ini particul1ar. ani cit ire clicli6 cani be mnerged into a programn
xv th it sinigle high-level command. Also, the smilne highi-level1 interface caii be used t~o de~fiine
neW (1chhi. Duci to the use of the Plan Calculitis a~s ai internal representation, INlEmnacs

isprdoi ill i1;i lit lv prga nnnglnug ridepetdiict. AlIthough the first runii ing vers ion of

T.I ~IC 5\vt cml \vas kmlst.ructek Io operat e oil IJsp ror i.relaiveiv little effort wvas required
to CxI Cud it UPOerat ic :\(tida prograls iua \vcli

Figuire Gi ill usirat Cs I II(, lpoW- of' lN IILiiacs. Theco('m1nia ds Ii thiis figure refer to a
111,I 11111'I of i i li iilt at iol- level ci('1(s ci ,i lllplnjc report, chl in neriahCIdtionI, anid qu~er '

llsc. to, kc v. Illic teriiis oull iof. I (), ai file c ox titlc, aind .suniiihlaI'v arc the naiuies of roles
ilt Ilce clicllS. (Our. currcntlib 1rary of, ilpleilitat i0on Clich1s is similar Iii scopeC and level

() cal iclr iiiac I liC-l-usah[C codlificadtions of progra iniiipleinci I tat ion kntowledge, such as [22];
I iowver. s disc nSScd carl i(er. tHie Plan Ca Icu ii plrov'ides a bet ter rejpresentatiofl of this

Define a simple-report program UNIT-REPAIR-REPORT.
Fill the enumerator with a chain-enumeration of UNITS and REPAIRS.
Fill the main-.file-key with a query-.user-for-key of UNITS.
Fill the title with ("Report of Repairs on Unit "& UNIT-.KEY).
Remove the summary.

Figutre 6. T hese l 5 N hiiiacs coinmiii ds produtce a 55; linie Ada, Jrogranli.

(i eiI hat at progri liniuer k iiowS wIII iclih('Iis lie wvants to use, h B3 macs cani be veryN
lielpfiullin Iaki, (carc of' thle (let ails of jpillitl II~ g th lcs togethecr correctly. how\ever,
1K H13LiI, IS Hiot in ait ion cit her to su gvcstt o tdie jprograinuner which clich6s to choose,
or' to criti(lUe the p)rogrammiier's choices. Anot licr area of difficulty wvith KBEmnacs is the

o\Verly implerat ive, order-de?1)cndent niature of IKI3Enacs commands.

These problems with IKBEmacs stemi friom the fact that it has no notion of specifications
or of thle relationship betwveen specification and implementation clich6s. This is because
lBhiliinacs xx'as implemented on to1) of ani earlicr version of the Plan Calculus, rather than
uising ' CAIKE. The availability of CAK E, which suppor'ts logical reasoning within the Plan
Calculus. nowv makes it possible to providle a inoie declar'ative and design-oriented language
for' tic programmer to use. The reasoning facilities Ii CAKE wvill also support the detection
aiid explanation of some eiriors ina~le by the pmogriammer and some automatic selection of
cII ChIe s.

3.2 A Target Scenario

F~igiurc 7 showvs a hypothetical initerac'tioin bet%%w((' a. prog1'ami-nie' and the p~roposed Design

A\pprenit ice. TI us Is thle first lpart of a niuici longer targret scenario [47], Ii which the iinitial
(lc.SIgn2! shown~ Is hut hler elaboirated aind chaniged by the pr1ogrammfer, with assistance fromn

t lie, Appuentice.

ligurc 7 begrins w\it Ii thec progra inncr lpro\'ili itu specification. This could be clone
inIItcra ct I velv or' prepared wvit Ii at text edlit or and submitted to thme Apprentice all at once. TIhe
Speccificat ion consists of' two p~arts. The lirst pa rt dlescr'ibes a har'dwar'e device (an imaginar'y
levicc cal lcd the X7). The second part decribes a driver prograim for the K7. (The dloirain
of de\'ice drivers wais chosen, b~ecause it is a good example of the kind of domain in wvhich the
:\ lpi'el t ice a pproach) is mi ost. appi'iate na nvk .dminweete ar'e many si ila

JO ~15. hu1t whlic re ea('it p)rograiii is Ii k~ ly to ha 1Vc 5Onie ti iintI iMJc~d i(I osvrncuasies.)

12

> The "K7" is an interactive display device where:
The screen height is 4 lines.
The screen width is 40 characters.
The I/O is in terms of ASCII characters.
Direct cursor positioning is not supported.
The bus interface is a standard SLU except that:
Writing a 1 in Bit 1 of the XCSR initializes the device.

Initialization of the device blanks the screen and homes the cursor.
Completion of initialization is signaled in the same way as the
transmission of a character.

Sending characters to the K7 and initialization of the K7 cannot be
done at the same time.

> The K7 driver is an interactive display driver where:
Echoing is not supported.
Rubout handling is not supported.
The basic software functions are:

Supported: PUTC, WRITE & GETC.
Ignored: OPEN & CLOSE.
Not supported: READ & SEEK.

The control codes are:
:CLEAR - blanks the screen.
:RESET - does a :CLEAR and flushes pending input.
:LINE-NUMBER - returns the cursor line.

The implementation guidelines are:
1- Do no consing.
2- Favor space efficiency.
3- Defer error checking.

> Write code for the K7 driver.

Request for advice regarding implementation of :CLEAR.
The following suggest implementing :CLEAR by initialization of the K7:

(1) :CLEAR blanks the screen.
(2) The only K7 operation that blanks the screen is initialization.

However, this decision leads to the following constraint violations:
(3) Initialization homes the cursor, which is not part of the specification of :CLEAR.
(4) A device should only be initialized by its initialization function.

>Override constraints.

Request for advice regarding implementation of :LINE-NUMBER.
The following suggest no choices for implementing :LINE-NUMBER:

(1) :LINE-NUMBER returns the cursor line.
(2) No K7 operation returns the cursor line.

> Postpone.

Constraint Violation: Interactive device drivers usually have a lookahead operation.
The following are standard lookahead specifications:

(1) : ARE-CHARS-WAITING returns T if there are pending characters.
(2) :NUMBER-CHARS-WAITING returns the number of pending characters.
(3) :PEEK returns NIL if there are no pending characters and returns the next

character (without removing it from the input buffer) if a character is pending.
> Use (2).

Figure 7. Excerpt of a target scenario for program design. Programmer input follows the ">"

prompt. Response from the Design Apprentice is in italics.

13

Notice that the statements at the beginning of F;sure 7 are much more declarative than
KNBEinacs commands. They also have a markedly different character than logic-based spec-
ifications, such as Larch [231 or Ina Jo [281. or very-high-level programming languages, such
as Refine [1] or GIST [4], due to the prominent use of design clich&, such as interactive

display device and serial line unit (SLU). The use of cliches makes this in effect an extensible
language.

The NT specification contains both positive information, which describes how particular
roles of this clich6 are filled in (e.g., the screen height), and negative information, which
states that some aspects of the clich6 are not relevant (e.g., the K7 does not support direct
cursor positioning).

A particularly interesting part of the driver specification is the implementation guidelines
section at the end. The Apprentice will use these guidelines when deciding which algorithms
to pick in implementing the driver. For example, the first two guidelines cause the Appren-
tice to select algorithms with no dynamic storage allocation and which trade time for space.
The third guideline instructs the Apprentice to defer inclusion of error checking code until
after the prototype version of the driver is written and tested. The key benefit of this post-

1)onement is not that it saves the Apprentice coding time, but that it saves the programmer
thinking time.

The remainder of the interaction in Figure 7 illustrates the Design Apprentice's ability to
detect and explain errors made by the progranmmer. The interactions shown will be supported
by the facilities in Cake for propagation of information, dependencies, and contradiction
handling.

One kind of interaction revolves around incomlplete knowledge. After being requested to
write the code for the K7 driver in the middle of Figure 7, the Apprentice starts to make
the remaining design decisions. The first request for advice arises when the only way the
Apprentice knows to implement one of the K7 operations (:CLEAR) conflicts with its default
constraints. The programmer in this instance tells the Apprentice to override the constraints,
effectively extending the specification of:CLEAR. A second request for advice arises when the
Apprentice lacks any applicable knowledge for how to implement the: LINE-NUMBER operation.
Notice that the programmer may at any time postpone answering a question, which enables
hiiJi, to inaintain control of the interaction.

Another kind of interaction revolves around inconsistency, which can be of two forms.
First, there may be inconsistency between different things the programmer says explicitly
(this is not illustrated in the short excerpt here). Second, there may be inconsistency between
what the programmer says and knowledge contained in the clich6s library (e.g., the constraint
violation at, the end of Figure 7).

After the problems With :CLEAR and :LINE-NUMBER have been resolved, the Apprentice
generates executable code for the K7 driver, as requested. (Space constraints make it impos-
sible to show the code created. See [47].) To do so, the Apprentice needs to automatically
make a number of additional detailed implementation decisions. For example, it has to make
reasonable decisions regarding the implementation of the various semaphores and buffers in
tie driver.

The Design Apprentice differs from program generators, such as Draco [39] and PHI-
nix [7]. and procedurally implemented compilers for very-high-level languages such as SETL [53],

[riiarily in tIe fact, that it supports advice-taking from the programmer, and even allows

14

the prograimmer to get involved in detailed coding where necessary. This flexibility is made
* pussihle by the use of the Plan Calculus to represc Lhe current design, together with

tile explicit representation of the possible design and implementation decisions in the clich6
library.

The Design Apprentice also differs significantly from transformational implementation
syst ems such as Pecos (6], PDS (12], and Refine [1]. Although overlays encode much of the
same knowledge as transformations, the use of the Plan Calculus makes it possible to reason
about this knowledge more easily. In addition, the derivation of a prograin in the Plan
(alcUlus typically has many fewer steps than a transformational derivation, since there is
nto n1(led for transformations that deal with minor syntactic variations.

3.3 Building The Design Apprentice

In the first year of the research, we plan to concentrate on building a comprehensive library
of design clich6s in the domain of device drivers, using the knowledge representation facilities
of CAIKE. One source for these cliches are system design textbooks such as (9 and [13].

In the second year of the research, we expect to implement the control and problem-
solviiig structures necessary to support the kind of interactions illustrated in Figure 7. By
the end of the second year, we expect to demonstrate a substantial portion of the capabilities
of the Design Apprentice.

In the third year of the research, we plan to test our ideas by applying the Design
Apprentice to a different domain (to be chosen). This new domain should have some overlap
with device drivers (to demonstrate the reuse of clichds), but be different enough to challenge
the methodology. By the end of the third year, we expect to complete a prototype that
demonstrates all of the capabilities of the full target scenario [47 in both domains.

4 Optimization

A central thrust of the work described in the preceding section is toward designing software
using standard, well-understood components (clich~s) as much as possible. This approach

promises to both reduce the cost of production and increase the reliability of the resulting
software. However, any approach based on extensive reuse almost inevitably sacrifices the
efficiency of the resulting software. Greater efficiency can almost always be obtained by
writing specialized code tailored for the task at hand. A traditional approach to dealing
with this kind of problem is to apply various optimization (improvement) techniques. We
are investigating a new such technique: automatic redistribution of intermediate results (241.

Programs generally call many subroutines and perform many state-changing operations
in the course of a computation. On completion, a subroutine returns one or more values
and possibly produces some changes in the program's state (via side effects). The term
intermediate result (or simply result) is used to refer to any such value or state change.
Intermediate results are used as input to, and to satisfy preconditions of, other subroutines.

One source of inefficiency in programs is computing new results even though previously
* computed results would suffice. This is particularly true in programs designed using a library

of predefined, general abstractions. Such programs can be improved by modifying them to

15

make certain intermediate results available later in the computation. This "redistribution"
cai he accoilllis.e(l in mai' ways, sucl as explicitly storing results for later retrieval (using
variables or a special-purpose data structure), passing extra parameters between subroutines,
and moving code that can use a result into the local context of the result's initial computation.
A conunon feature of these program modifications is they break down the abstraction barriers
between the reusable components.

The cuncept of redistribution of intermediate results unifies and extends a number of
stan(lard ,ptimization techniques. In particular, common compiler techniques such as subex-
pression climination. (lead code removal, loop fusion, and code motion [3] are all examples
of redist.-ibut ion. An essential limitation of optimization techniques in compilers, however,
is that they operate only at the source language level. This means that they cannot apply
the saime optimizations to user-defined (or library) abstractions. For example, although an
optimizing Lisp compiler may be able to conclude that a certain list copy operation is un-
necessary, it cannot apply the analogous reasoning to eliminate the redundant copying of a
user-defined abstraction.

Memoization [37] (explicitly saving values for later use) and tupling [41] (the combination
of t \u initially separate functions into a single. tuple-valued function to share intermediate
results) are more complex examples of redistribution that, to date, are typically only applied
manually. In addition, although it is quite different in spirit, much of the effect of finite
differencing [40] (incrementally updating a result rather then recomputing it completely on
each cycle of a loop) can be obtained by means of redistribution.

4.1 An Example

As an illustration of the concept of optimization by redistribution of intermediate results,
consider the following very small example involving a program designed using a library of
set abstractions. In particular, suppose that we have chosen an implementation of the set
abstraction in which sets are represented as lists of their elements, subject to the invariant
that the list has no duplicates. Three of the library-defined operations associated with this
implementation are shown below:

(DEFUN SET-ADD (ELEMENT SET)

(IF (MEMBER ELEMENT SET) SET (CONS ELEMENT SET)))

(DEFUN SET-MEMBER? (ELEMENT SET)

(MEMBER ELEMENT SET))

(DEFUN SET-SIZE (SET)

(LENGTH SET))

Now consider the following program that uses these operations. Assume that the elided

portions of the program include no invocations, either directly or via further subroutines, of
the SET-SIZE operation. Furthermore, assume the program has no side effects, and that it
only returns from the last expression in the body.

(DEFUN MY-PROGRAM (...)
... (SET-ADD ...) ...
... (SET-MEMBER? ...)
(THE INTEGER ...))

16

The redistribution opportunity here relies on the observations that (1) the only opera-
titn iM this exam)le that depends on the representation invariant "no duplicates in list" is
SET-SIZE. and (2) the test in SET-ADD has the sole purpose of enforcing this invariant. Inas-
much as MY-PROGRAM does not invoke SET-SIZE, and its only result (a value of type INTEGER)

cannot involve a set, the maintenance of the invariant is not needed. Therefore, the input to
the test in SET-ADD may be eliminated and its input redistributed directly to the consumers
of its output. (This has the effect of converting SET-ADD from linear time to constant time.)
In other words, the program may be rewritten as follows:

(DEFUN SET-ADD-i (ELEMENT SET)
(CONS ELEMENT SET))

(DEFUN MY-PROGRAM (...)

... (SET-ADD-i ...) ...

... (SET-MEMBER? ...)

(THE INTEGER ...))

Although this example is overly simplified (due to lack of space), it exhibits two key
features of the redistribution of intermediate results, both of which make it a more tractable
subcase of optimization in general.

First, redistribution does not change the basic algorithm of a program. For example.
changing the implementation of a sorting routine from bubblesort to heapsort involves more
than redistribution. Although we do not yet know how to precisely characterize this notion
of -not changing the basic algorithm," we believe it has to do with preserving the structure
of the design explanation-or ultimately, the proof of correctness-of the program.

Second, it is almost always more efficient to share an intermediate result instead of
recomputing it. In general, knowing whether a program's efficiency will improve aftcr an
optimization is very difficult, involving a deep understanding of the performance properties
of the algorithm as a whole. In the case of redistribution, however, this can usually be
determined by a much more limited analysis (such as making sure the overhead of adding
an auxiliary data structure does not exceed the cost of recomputation).

4.2 Automating Redistribution

We will demonstrate that redistribution of intermediate results can be automated by imple-
inenting the technique using the representation and reasoning facilities of CAKE. As part
of this demonstration, we will provide to the optimizer, in addition to a program, a record
of the design of the program in the Plan Calculus, such as will be produced by the Design
Apprentice.

Automating the optimization technique can be broken into three subtasks: identifying
opportunities for redistribution, determining whether the redistribution is advantageous,
and implementing the redistribution. Of these three, the first subtask is the most difficult
to automate, since a priori it requires a search in the space of all pairs of a result and a
use of a result in the program. In our initial investigations, we will ignore the question of
determining whether a redistribution is advantageous. Implementing the redistribution is
straightforward: in the Plan Calculus representation of a program it is often no more than

rerouting a data flow arc.

17

The search for potential redistribution pairs can be filtered in a number of ways. For

example. one need only consider pairs in which the target result is in a control environment

reachable from the source result. (This is easily computed in the Plan Calculus.) One can

also filter out pairs that involve disjoint data types.
For each remaining pair, the question that needs to be answered is whether the earlier

result satifies the weakest preconditions on the later use. (A special case of this is when an

intermediate result is identical to a later result, i.e., when the same thing is literally computed
twice.) A major focus of the research will he to discover constraints on the structure of the

design record that make answering this form of question tractable. For example, if the design

record is equivalent to a complete proof of correctness of the program, the fact that certain
clauses in a postcondition are not used in the proof may suggest that the relevant results

may be replaced by weaker ones. We also need to develop techniques for using incomplete

specifications. while still guaranteeing that the optimization is correctness-preserving.

If it is not possible to fully automate the identification of redistribution opportunities,
we can also apply the assistant approach to this subtask. For example, the programmer
may be able to help prune the search. In th? limit, the programmer might ask the system

to redistribute a specific result to a specific target location, with the system taking care of
the details of implementing the redistribution. Alternatively, the system may be able to

query the programmer for a specific bit of additional specification information needed to
justify a particular potential redistribution (similar to Miller's proposal for an "interactive
compiler" [36]).

In the first year of the research, we will concentrate on developing a rich corpus of hand-
worked examples of the technique applied to a wide range of programs. A major goal of
this phase will be to gain further insight into the structure of the design record required to
support automation of the technique. Going hand-in-hand with these example programs will
be a library of reusable abstractions and their implementations.

In the second year of the research, we will begin implementing the demonstration system.
We expect to work first on modules for automatically implementing redistribution, such as
by adding global variables, hash tables, etc., and secondly on the techniques for pruning the
search. For convenience, we will use Lisp as the source language; however, our system will
be to a large extent language-independent due to the use of the Plan Calculus as the internal
representation.

In the third year of the research, we will concentrate on strengthening the ability of the

system to prove properties of programs within the framework of the design record. One
of our final measures of success will be to demonstrate actual runtime speedup on realistic
programs resulting from automatic redistribution of intermediate results.

5 Debugging

No technology will ever completely eliminate error in the software development process. The
best we can hope for is to detect bugs as early as possible and provide support for correcting
them. For example, the Requirements Apprentice described in [50, 42] is directed towards
detecting bugs that can creel) in at the very earliest point in the process, when an informal

requirement is first formalized. In this section, we first report on an intelligent assistant

is

for localizing bugs in completed programs. We then describe further research to generalize
jand extend the system to support incremental change (evolution) throughout the design and

implement ation.

5.1 Localizing a Bug

We have recently completed a prototype debugging assistant, called Debussi [29], that assists
a programmer in the task of determining the smallest region of a program that manifests
a bug. This task is only part of the debugging process (other tasks are detecting an bug
and repairing it), but it is a particularly time-consuming one for people to perform in large
software systems.

Formally speaking, there are only two kinds of bugs that can occur in a program: the
wrong subroutine (or primitive) is called at some point, or there is something wrong with
the pattern of data and control flow in the definition of some subroutine. Debussi's goal is
to narrow the bug to either a single erroneous call, or a single subroutine definition in which
the data/control flow is erroneous.

The way Debussi works is best described by means of an example. The top part of
Figure S shows a simple unification program that contains a bug. (Again, for convenience
we are using Lisp as the source language, but the implementation of Debussi is to a large
extent language-independent.) As illustrated by the test cases in the middle part of the
figure, the toplevel function UNIFY compares two patterns. In these patterns, variables are
represented by lists whose first element is "?". If it is not possible to unify the patterns, the
symbol NOMATCH is returned; otherwise an association list is returned specifying the necessary
variable bindings. Note that a return value of NIL means that the patterns unify without
binding any variables.

The third part of Figure 8 shows an interaction with Debussi that leads to the localization
of a bug. This interaction begins with a test case that manifests a bug. The two patterns
shown should unify with a NIL binding list. Notice that the programmer here is performing
the task of detecting the existence of a bug in the first place. There is a large body of
literature on automating the functional testing of programs (see [8]), including our earlier
work on a Testing Assistant [11].

The command (OUTPUT-SHOULD-HAVE-BEEN NIL) informs Debussi that the preceding test
case should have resulted in a different value. Debussi responds by translating the program
UNIFY into the Plan Calculus and using CAKE to produce a proof (using a mixture of symbolic
and concrete execution) of why the output is wrong. The dependencies in this proof are used
to localize the bug.

As a starting hypothesis, Debussi assumes that the data flow and control flow structure
of UNIFY is correct, i.e., that the bug is in one of the calls. If this assumption fails to further
localize the bug, it will then be reasonable to assume that something is in fact wrong with
the structure of UNIFY.

A first analysis of the dependencies produced by CAKE reveals that that the calls to
EXTEND-IF-POSSIBLE and FREEOF? cannot be responsible for the bug. However, in the toplevel
execution of UNIFY, there are fifteen calls that do participate in the computation of the

* incorrect result: five predicates that together decide that the fifth COND clause is applicable,

19

(DEFUN UNIFY (P Q &OPTIONAL (FRAME NIL))
(COND ((EQ FRAME 'NOMATCH) 'NOMATCH)

((AND (VAR? P) (VAR? Q)) (VAR-VAR-MATCH P Q FRAME))
((VAR? P) (EXTEND-IF-POSSIBLE P Q FRAME))
((VAR? Q) (EXTEND-IF-POSSIBLE Q P FRAME))
((AND (CONSP P) (CONSP Q))
(UNIFY (CDR P) (CDR Q) (UNIFY (CAR P) (CAR Q) FRAME)))

((EQ P Q) FRAME)
(T 'NOMATCH)))

(DEFUN VAR? (X) (AND (CONSP X) (EQ (CAR X) '?)))

(DEFUN VAR-VAR-MATCH (V W FRAME)
(IF (EQ V W) FRAME

(LET ((BV (ASSOC V FRAME :TEST #'EQUAL))
(BW (ASSOC W FRAME :TEST #'EQUAL)))

(IF (AND (NULL BV) (NULL BW)) (CONS (CONS V W) FRAME)
(UNIFY (IF BV (CDR BV) V) (IF BW (CDR BW) W) FRAME)))))

(DEFUN EXTEND-IF-POSSIBLE (V VAL FRAME)
(LET ((BV (ASSOC V FRAME :TEST #'EQUAL)))

(COND (BV (UNIFY (CDR BV) VAL FRAME))
((FREEOF? V VAL FRAME) (CONS (CONS V VAL) FRAME))
(T 'NOMATCH))))

(DEFUN FREEOF? (VAR E FRAME)
(COND ((ATOM E) T)

((VAR? E)
(AND (NOT (EQUAL VAR E))

(LET ((B (ASSOC E FRAME :TEST #'EQUAL)))
(OR (NULL B) (FREEOF? VAR (CDR B) FRAME)))))

(T (AND (FREEOF? VAR (CAR E) FnAME)
(FREEOF? VAR (CDR E) FPAME)))))

> (UNIFY '(F (? X)) '(G 3)) --> NOMATCH
> (UNIFY '(F (? X)) '(F (G (? Y)))) -- > (((?X) (G (? Y))))
> (UNIFY '(F 3 4) '(F 3 4)) --> NIL

> (UNIFY '((? F) 4) '((? F) 4)) -- > ((? F) (? F))
> (OUTPUT-SHOULD-HAVE-BEEN NIL)

Pursuing suspect: (UNIFY '(? F) '(? F)) -- > ((? F) . (? F))
Are the arguments to UNIFY correct? YES

Expanding structure of UNIFY.

Expanding structure of VAR-VAR-MATCH.

The bug is the call to (EQ V W) in VAR-VAR-MATCH.

Figure 8. An bug localized by Debussi.

20

* four function calls that compute data used by the predicates, and six function calls that
comlipuLe the result. Any one of these calls could be responsible for the bug.

The number of suspects can be further narrowed by appealing to the following pruning
method, which is closely related to the constraint suspension technique for hardware trou-
bleshooting described in [15]. Assuming that the current manifestation is due to a single bug
(this is not the same as assuming there is only one bug anywhere in the program, which is
certainly not very plausible for a large system), if every possible output of the suspect leads
to an erroneous result (including abnormal termination of the program), then that suspect
can be exonerated (removed from consideration). In other words, it is not possible to correct
the bug by changing this suspect.

For example, in the execution of the failing test case, the predicate (VAR? P) returns NIL.
To exonerate this suspect, Debussi considers what would happen if the predicate returned
a non-nil value instead. Since this also leads to an erroneous overall result, this predicate
is exonerated. In the example in Figure 8, this kind of pruning exonerates all five suspect
predicates. Furthermore, this allows the four calls computing values used by the predicates
to be exonerated as well, since their values are used only by the predicates.

Note that if the single-bug assumption turns out to be wrong in a particular instance.
Debussi mav end up in the anomalous state of having no suspects left. In this situation, it
can either give up and notify the programmer, or try applying the same pruning method to
pairs of suspects, triples, and so on (this is liable to be too expensive for all but the smallest
programs). However, Debussi may also succeed in finding a bug using the simple pruning,
even when there is more than one, depending on the exact details of the situation.

In terms of CAKE, what this pruning technique is doing is forcing it to look for an
alternative proof of the failure of the test case that does not involve the given suspect.
Since CAKE is a limited reasoner, it is possible that the first proof it found had unnecessary
dependencies. For example, in CAKE's initial symbolic execution, the result of a program
depends on the value (nil or non-nil) of every predicate that is tested on the execution path.
To exonerate a predicate, we see if assuming it produced the opposite value still leads to an
erroneous result.

To choose between the six remaining suspects, Debussi solicits additional information
from the user. Debussi chooses to ask first about the recursive calls to UNIFY using the
heuristic that user-defined functions are more likely to be associated with bugs than built-in
functions. Starting with the first (in execution order) of these calls, Debussi determines
whether the bug is in the recursive call to UNIFY by asking the user whether the inputs
provided are correct (see Figure 8). The user responds that they are correct. Since the
output of this call is already known to be incorrect (it is the same as the result of the
toplevel execution of UNIFY), this localizes the bug. Debussi continues by expanding this
call.

Things now proceed much as above except that, after predicate pruning, only one suspect
(VAR-VAR-MATCH P Q FRAME) remains. No questions need to be asked about the inputs and
output of this call, because they are connected directly to the inputs and output of UNIFY
and are therefore known to conflict (under the assumption that the data flow and control
flow in UNIFY is correct).

Debussi then proceeds to look in detail at the definition of VAR-VAR-MATCH. One of the
initial suspects at this level is the predicate (EQ V W), which returns NIL. Resimulating with

21

this predicate returning T. l)ehussi discovers that UNIFY returns the correct value for the
test case. It therefore informs the user that the bug is this call (see Figure 8). Notice that

starting with the user's initial declaration of a failing test case, Debussi only had to ask one
question to localize the bug.

The repair for this bug (which is the responsibility of the user) is to call EQUAL instead
of EQ. It is interesting to note that this bug was actually made by one of our students-we
suspect it was due to the fact that he had inpleiented a special reader macro, which allowed
hinin to tyl)e ?F for a variable iiitead of (? F)

)cb~ssi differs from most other automated program debugging systems, such as [2, 25,
'2, 3S. .52, 5-1], which are 1 uilt around liibrarie> of patterns for correct and/or incorrect
prograuls. This knowledge-based approach renders these other systems more powerful in
lie area where they are knowledgeahle, [hut iich less widely applicable. Many of these

uther ,-vsteiiis can also utilize their knowledge to ,uggest how to repair a bug. Debussi only

addresses the 1)roblem of localizatlio:.

Due to its reliance on reasoning from first principles, Shapiro's system [55] for debugging
Prolog programs comes closest to Debussi. To localize a bug, Shapiro's system performs
t binary search of the computation history, asking the user about the correctness of the
various interillediate results. This can soietimes work well, but fails to take advantage of
ol)port llities to prune the set of suspects.

5.2 Assistance for Design Evolution

L)ebiussi has demonstrated the effectiveness of applying the Plan Calculus and CAKE's dependency-
loased reasoning facilities to assisting in the debugging of completed programs using concrete
test cases. \Ve believe this approach can be extended to cover more of the debugging pro-
Css. i.e.. bug detection and repair. and to deal with bugs earlier in the software process,
i.e., (lii ring desigil. lore generally, I)ebussi illustrates the beginnings of a dependency-based

me thodologv for managimg change (evolution) i hroughout the software process.

In the first year of the research, we will experiment with using Debussi to localize bugs in
l)artially designed prograns. This extension should be fairly straightforward, since the Plan
Calculus is a wide-spectrum representation. Along with this, we will generalize the notion
of "test case" to include any partial specification. For example, a test case might say that if
the input to a routine is positive then its output is negative. The deductive capabilities of

AKE will be crucial to using this kind of symbolic information.
It the second year of the research, we will investigate the use of cliches in debugging. This

is an area that we have explored in earlier work [5-11. but which we may now be able to improve
il)Oii significaitiy using the automated recognition techniques described in Section 2. We
plan to consider both explicit "bug cliches," and the use of near-miss clich6 recognition to
detect l)tigs. It may also be useful to associate bug clich6s with design clich6s in the library.

In the third year of the research, we will invest igate intelligent assistance for bug detection
aid repair. For example, in the area of bug (letection, it may be useful to associate test.
generation information with design clichSs. In the area of repair, we will explore the use of
incremental reasoning techniques to verify that a repair is successful.

226

6 Conclusion

Ilie preceding sections have covered a wide range of research topics, with a primary goal of
bringin g out their svnergy. Work in each of these four areas shares not only a philosophi-
cal outlook-the assistant approach and clichds-but are also using the same experimental
1udiulin-the Plan Calculus and CAICE. This facilitates communication about shared prob-
lenis and makes it possible to quickly exploit opportunities to share results.

Specific examples of expected synergy include the following (some of which have already
been pointed out above): Recognition and design can be viewed as inverse functions that
share the same library and representations. Design will eventually include debugging tech-
niques. Optimization techniques will compensate for inefficiencies introduced by clich6-based
desi'ii. Optimization may make use of recognition techniques to identify opportunities for
optii ization. Debuggitng may make use of recognition techniques to recognize bug clivli6s.

References

[11 L. N\. Abrado-Fandiflo. An overview of Refine 2.0. In Second Int'l. Symp. on Knowledge
Eng. -Software Engineering, Madrid Spain, April 1987.

[2 A. Adam and J. Laurent. LAURA, A system to debug student programs. Artificial

Intelligence. 15:75-122, 1980.
f31 A. V. Aho. R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[41] . NI. Balzer. A 15 year perspective on automatic programming. IEEE Trans. on
Soft ware Engineering, 11(11): 1257-1267, November 1985.

r5'1 1). R. Barstow. An experiment in knowledge-based automatic programming. Artificial
Intelligence, 12(1 & 2):73-119, 1979. PhD thesis. Reprinted in C. Rich and R.C. Waters,
editors, Readings in Artificial Intelligence and Soft ware Engineering, Morgan Kaufmann,
1986.

[6] D. R. Barstow. Knowledge-Based Program Construction. North-Holland, New York,
1979.

[7] D. R. Barstow. A perspective on automatic programming. Al Magazine, 5(1):5-27,
Spring 1984. Reprinted in C. Rich and R.C. Waters, editors, Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann, 1986.

[8] 13. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1983.

[9] T. Biggerstaff. Systems Software Tools. Prentice-Hall, 1986.

[10] 1). Brotsky. An algorithm for parsing flow graphs. Technical Report 704, MIT Artificial
Intelligence Lab., March 1984. Master's thesis.

23

ii.1). Chapman. A program testing assistant Comm. of the A(".N1. 25(9):625-634, Septem-
ler 19S2.

12' T. E. Cheatham. Rleusabilitv thrOlgh progran transformation. IEEE Trans. on Software
rin.10(5):5-595, September 19S4. Reprinted in C. Rich and IR.C. Waters,

e(ditors. Readings in Artificial Intelligence and Soft ware Engineering, Morgan IKaufmann,
19 I .

13')ii. Comer. Operating Svstenis Design: Te XI.?{" Approach. Prntice-liall, 1984.

1.f D. S. Cyphers. Automated program explaiiation. Working Paper 237. MIT Artificial
Intelligence Lab.. August 1982.

I x I'. Davis. Diagnostic reasoning ibased ,l i >l rn cl iire and behavior. Artificial Intelligence,
"'1(1 3):317-410,)ecember 198-1.

'i16] .. Domingue. Itsv: \n automated programming advisor. Technical Report 22, The
Open University. Human Cog. Res. Lab, Milton Keynes, England., June 1987. PhD
thesis.

I7 II. Elrig. M. Nagi. and G. Rozenberg, editors. 2nd Int. Workshop on Graph-Grammars
and Their Application to Computer Science. Springer-Verlag, New York, Haus Ohrbeck,
Germany, October 1982. Lecture Notes In Computer Science Series, Vol. 153.

ISJ G. Faust. Semiautomatic translation of COBOL into HIBOL. Technical Report 256.
'MIT Lab. of Computer Science, March 1,81. Master's thesis.

r 1 9 1 Y. A. Feldman and C. Rich. Bread. Frappe, and Cake: The gourmet's guide to auto-

imated deduction. In Proc. 5th Israeli Svmlp. on Artificial Intelligence. Tel Aviv. Israel.
December 1 98.

120] Y. A. Feldman and C. Rich. Pripciples of knowledge representation and reasoning in
the I:HAPPE systemn. In Proc. 11th Int. Joint Conf. Artiflcial Intelligence, Detroit, MI,

Aigust 1989. Submitted.

:2V S. F. Fickas and R. Brooks. Recognition in a program understanding system. In Proc.
(;h Int. .Joint (ionf. Artificial Intelligence, pages 266-268, Tokyo, Japan, August 1979.

[22] ('. Green and D. R. Barstow. On program synthesis knowledge. Artificial Intelligence,
10(3):241-279, November 1978. Reprinted in C. Rich and R.C. Waters, editors, Readings

in Artificial IIntelligence and Softiware Engineering, Morgan IKaufmann, 1986.

'23" .. V. Guttag, .)..1. torning and .1. NI. Wing. The Larch family of specification languages.
IL"I'L!2. Software. Septeimiler 1 985.

;2t 1. R. J. Ial. Prograin 1i1nmroXVement Ly aitomatic redistribution of intermediate results.

\Vorking Paper :305. MI I' Artificial Intelligence Lab., May 1988. PhD proposal.

24

[25] W. L. Johnson and E. Soloway. PROUST: Knowledge-based program understanding.
IEEE Trans. on Software Engineering, 11(3):267-275, March 1985. Reprinted in C. Rich
and R.C. \Vaters, editors, Readings in Artificial Intelligence and Software Engineering,
.\Iorgan Kaufmann, 1986.

[26] V. Jonckers. Exploring algorithms through mutations. In 7th European Conference on
Artificial Intelligence, pages 556-56S, Brighton Centre, England, July 1986. Vol. 1.

[27] E. Kant. Understanding and automating algorithm design. IEEE Trans. on Software
Engineering, 11(11):1361-1374, November 1985.

[2S] It. A. Kemmerer. Testing formal specifications to detect design errors. IEEE Trans. on
Soft ware Engineering, 11(1):32-43, January 1985.

[29] R. I. Kuper. Automated techniques for the localization of software bugs. Technical
Report 1053, MIT Artificial Intelligence Lab., May 1988. Master's thesis.

[30] J. Laubsch and M. Eisenstadt. Domain specific debugging aids for novice programmers.
In Proc. 7th Int. Joint Conf. Artificial Intelligence, pages 964-969, Vancouver, British
Columbia, Canada, August 1981.

[31] S. Letovsky and E. Soloway. Delocalized plans and program comprehension. IEEE
Software, 3(3), May 1986.

[32] F. J. Lukey. Understanding and debugging programs. Int'l Journal of Man-Alachine
Studies, 12:189-202, 1980.

[33] R. Lutz. Program debugging by near-miss recognition and symbolic evaluation. Tech-
nical Report CSRP.044, Univ. of Sussex, England, 1984.

[34] R. Lutz. Diagram parsing - A new technique for artificial intelligence. Technical
Report CSRP.054, Univ. of Sussex, England, 1986.

[35] B. P. McCune and J. S. Dean. Advanced tools for software maintenance. Technical
Report 313, Rome Air Development Ctr., Griffiss AFB, NY 13441, December 1982.

[36] J. Miller. An interactive compiler: Tools and techniques for program transformation.
Proposal to National Science Foundation, 1988.

[37] J. Mostow and D. Cohen. Automating program speedup by deciding what to cache.
In Proc. 9th Int. Joint Conf. Artificial Intelligence, pages 165-172, Los Angeles, CA.
August 1985. Vol. 1.

[38] W. R. Murray. Heuristic and formal methods in automatic program debugging. In Proc.
9th Int. Joint Conf. Artificial Intelligence, Los Angeles, CA, August 1985.

[39] J. M. Neighbors. The Draco approach to constructing software from reusable compo-
nents. IEEE Trans. on Software Engineering, 10(5):564-574, September 1984. Reprinted
in C. Rich and R.C. Waters, editors. Readings in Artificial Intelligence and Software
Engineering, Morgan Kaufmann, 1986.

25

[40] R. Paige and S. Ioenig. Finite differencing of computable expressions. ACNl Trans. on
Programming Languages and Systems, .1(3):402-454, July 1982.

[41] A. Pettorossi. A powerful strategy for deriving efficient programs by transformation. In

Proc. 1984 ACM Syrp. on Lisp and Functional Programming, pages 273-281, 1984.

[42] 11. B. Reubenstein and R. C. Waters. The Requirements Apprentice: An initial scenario.
In Proc. 5th Int. Wrkshp on Software Specs. and Design, Pittsburgh, PA, May 1989.

[.13] C. Rich. A formal representation for plans in the Programmer's Apprentice. In Proc. 7th

hit. Joint Conf. Artificial Intelligence, pages 1044-1052, Vancouver. British Columbia,
Canada, August 1981. Reprinted in M. Brodie, J. Mylopoulos, and J. Schmidt, editors,
On Conceptual Modelling, Springer Verlag, 1984 and in C. Rich and R. C. Waters,
editors, Readings in Artificial Intelligence and Soft ware Engineering, Morgan IKaufmann,
19S6.

[44] C. Rich. Inspection methods in programming. Technical Report 601, MIT Artificial
Intelligence Lab., June 1981. PhD thesis.

[4.] C. Rich. The layered architecture of a system for reasoning about programs. In Proc.
9th Int. Joint Conf. Artificial Intelligence, pages 540-546, Los Angeles, CA, 1985.

[-16] C. Rich. Inspection methods in programming: Cliches and plans. Memo 1005, MIT
Artificial Intelligence Lab., December 1987. Submitted to Artificial Intelligence.

[47] C. Rich and R. C. Waters. The Programmer's Apprentice: A program design scenario.
Memo 933A, MIT Artificial Intelligence Lab., November 1987.

[48] C. Rich and R. C. Waters. Automatic programming: Myths and prospects. IEEE

Computer, 21(8):40-51, August 1988.

[-19] (. Rich and R. C. Waters. The Programmer's Apprentice: A rcsearch overview. IEEE

Computer, 21(11):10-25, November 1988. Also published as MIT AI Memo 1004.

[50] C. Rich, R. C. Waters, and H. B. Reubenstein. Toward a Requirements Apprentice. In
Proc. 4th Int. Wrkshp on Software Specs. and Design, Monterey, CA, April 1987.

[.51] P. M. Ritto. Parallel flow graph matching for automated program recognition. Working

Paper 310, MIT Artificial Intelligence Lab., July 1988.

[52] G. R. Ruth. Analyis of algorithm implementations. Technical Report 130, MIT Project
Mac. 1973.

[53] .1. T. Schwartz et al. Programming with Sets: An Introduction to SETL. Springer-

Verlag, 1986.

[5 1] D. Shapiro. SNIFFER: A system that understands bugs. Memo 638, MIT Artificial
Intelligence Lab., June 1981. Master's thesis.

[55] 1-:. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983. I
26

[56] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Trans.
ouz Software Engineering, 10(5):595-609, September 1984. Reprinted in C. Rich and I.C.
Waters, editors, Readings in Artificial Intelligence and Softwa.'2 Engineering, Morgan
Kaufmann, 1986.

[.57] R. M. Stallman. EMACS: The extensible, customizable self-documenting display editor.
In Proc. of the ACM SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
OR, June 1981.

[58] R. C. Waters. KBEmacs: A step towards the Programmer's Apprentice. Technical
Report 753, MIT Artificial Intelligence Lab., May 1985.

[.59] R. C. Waters. The Programmer's Apprentice: A session with KBEmacs. IEEE Trans. on
Software Engineering, 11(11):1296-1320, November 1985. Reprinted in C. Rich and R.
C. Waters, editors, Readings in Artificial Intelligence and Software Engineering, Morgan
Kaufmann, 1986 and in T. Ichekawa, editor, Language Architectures and Programming
Environments. MIT Press, in preparation.

[60] R. C. Waters. Program translation via abstraction and reimplementation. IEEE Trans.
on Software Engineering, 14(8):1207-1228, August 1988.

[61] L. M. Wills. Automated program recognition. Technical Report 904, MIT Artificial
Intelligence Lab., September 1986. Master's thesis.

27

